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Figure 1. Two model systems storing kinetic and potential energies. Box A contains non-
interacting particles of equal masses. Box B contains a compressed spring squeezed between two
bodies of equal masses connected with a thread. The masses of the thread and the spring are
negligibly small. When the thread is cut and the spring is released, the two masses move freely
(box C). All the boxes are at rest in the reference frame O ′. The frame O ′ moves with velocity u
relative to the frame O.

F ‖ u, treating F and u as scalars is a legitimate simplification and the velocity change is
given by

du = u + a′ dt ′

1 + ua′ dt ′
c2

− u ≈ a′ dt ′
(

1 − u2

c2

)
. (3)

Using the time dilation formula dt = γ dt ′ we calculate that the change of the velocity u equals
du = a′(1 − u2/c2)3/2 dt . Integration of this differential equation is straightforward and the
result reads a′t = u(1 − u2/c2)−1/2. Therefore f (u) = u(1 − u2/c2)−1/2 and equation (2)
follows. Working backwards, we can also see that from equation (2) and u ‖ F follows
F′ = F. Similar to [24], the presented derivation does not use the momentum conservation
law explicitly.

The kinetic energy can be obtained in a standard way using the definition of the energy
as the work done by an external force when the particle moves from position 1 to position 2:

εkin =
∫ x2

x1

F dx =
∫ x2

x1

dP

dt
dx =

∫ p2

0
u dP . (4)

After integration [5–8], equation (1) follows.

3. Mass–energy relation

Now we consider a box filled with non-interacting particles (ideal gas) having equal masses m
(figure 1, box A). In a reference frame O ′ where the box is at rest the velocities of the particles
are given by vectors υ′

i ≡ (υ ′
i,x, υ

′
i,y, υ

′
i,z) (i = 1, . . . , N). We also select a reference frame O

relative to which the box moves along the x-axis with velocity u. The velocities of all particles
in the box are now υi (i = 1, . . . , N) and we can write their total momentum as

P =
N∑

i=1

mυi√
1 − υ2

i

/
c2

. (5)

Using the relativistic transformation for all the velocities we obtain for the x-component of the
total momentum

Px =
N∑

i=1

m
υ ′

i,x+u

1+υ ′
i,xu/c2√

1 − (υ ′
i,x+u)2+(υ ′2

i,y+υ ′2
i,z)(1−u2/c2)

c2(1+υ ′
i,xu/c2)2

. (6)
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Abstract
A straightforward derivation of relativistic expressions for the mechanical
momentum, kinetic and total energies, and mass–energy equivalence (including
potential energy) which does not require any knowledge of the energy–
momentum relation for electromagnetic waves or consideration of elastic
collisions, but is directly based on Newton’s second law and Lorentz’s
transformations, is presented in this paper. The existence of an invariant force
is shown to be important for the validity of the relativistic mechanics.

1. Introduction

The mass–energy equivalence is probably the most famous equation of the twentieth century
science. The simplicity of E = mc2 is such that the equation is recognized even by non-
physicists and de facto became a trademark of modern physics. However, many elementary
text books [1–8] fail to present a valid derivation of this equation. They frequently simply state
the final result [1–4] or, for example, using the expression for the relativistic kinetic energy

εkin = mc2√
1 − u2/c2

− mc2 (1)

argue [5–8] that the kinetic energy is the difference between a total relativistic energy and
a rest energy and therefore the form of equation (1) validates mc2 as the rest energy. This
argument is rather confusing and does not prove anything because the way in which the
expression for the kinetic energy is split into velocity-dependent and velocity-independent
parts is arbitrary. An approach based on Einstein’s type thought experiments [9–13] involves
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some preliminary knowledge about momentum and energy of electromagnetic fields. This
approach demonstrates that there is a mass change related to emission or absorption of a freely
propagating electromagnetic pulse by a massive body but Einstein’s original statement [10],
“The fact that the energy withdrawn from the body becomes energy of radiation evidently
makes no difference . . . ” does not look so evident. It implies that all forms of energy
are equivalent or at least can be reversibly and with 100% efficiency transformed into the
electromagnetic energy of a freely propagating electromagnetic pulse. Why not assume that
only a propagating electromagnetic pulse carries an equivalent mass? Ironically, nuclear
fission, a process most frequently used to illustrate mass–energy equivalence, does not release
exclusively electromagnetic radiation. This problem is most intensively discussed in relation
to the potential energy [14, 15] and is perhaps a reason why more advanced texts [16–20] derive
the energy–mass equivalence by considering in detail elastic and inelastic collisions between
two particles in different reference frames and/or by invoking symmetry considerations [21].
When such a derivation involves arguments based on relations between 4-vectors [17, 18, 22],
it becomes quite elegant but, in fact, the properties of 4-vectors should be included as postulates
in the relativistic theory. An interesting and purely mechanical analogy of Einstein’s derivation
[23] is a rare exception from the mainstream.

2. Relativistic momentum and energy

In this paper, we present not only a straightforward derivation of the mass–energy relation
but also simple derivations of equation (1) and a well-known expression for the relativistic
momentum

P = mu√
1 − u2/c2

(2)

solely based on Newton’s laws of classical mechanics and the relativistic Lorentz’s
transformations. Such an approach also substantially demystifies the famous E = mc2.

The starting point of the reasoning is Newton’s law for a particle dP/dt = F which, if F
is constant and the particle is at rest at t = 0 in a stationary lab frame XYZ, can be reduced
to P = Ft . The momentum P is proportional to the inertial mass of the particle and is a
function of its velocity P = mf (u). Hence f (u) = Ft/m. Now we consider a non-relativistic
acceleration a′ ≡ F′/m of this particle at every given instant in a reference frame X′Y ′Z′

moving relative to XYZ with a velocity equal to the instantaneous velocity of the particle.
Because F is a constant, it follows that u ‖ F ‖ F′ and generally speaking one can assume
that F = g(u)F′, where g(u) is a function of the particle’s speed. As an example, consider
a Lorentz force between a charged probe-particle moving in a normal direction towards a
uniformly charged plane. Because of the symmetry of the problem, a non-zero component of
any field acting on the particle should be normal to the plane and hence parallel to the velocity
of the probe. Therefore the force is purely electrostatic and is independent of the distance
from the plane and particle’s speed because there is no Lorenz contraction in the direction
perpendicular to the particle’s velocity and consequently there is no change in the charge
density of the plane. Thus we obtain F′ = F and as a consequence P ≡ mf (u) = ma′t .

Let the particle be at rest at time t ′ in a reference frame X′Y ′Z′. At later moments new
moving frames should be chosen to match the velocity of the accelerating particle but for an
infinitely short time interval dt ′ the classical Newton’s law holds and the particle velocity in
the frame X′Y ′Z′ increases from zero to a′ dt ′. In the reference frame XYZ, the change of the
velocity of the particle du can be obtained using the Lorentz velocity transformation. Because
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Figure 1. Two model systems storing kinetic and potential energies. Box A contains non-
interacting particles of equal masses. Box B contains a compressed spring squeezed between two
bodies of equal masses connected with a thread. The masses of the thread and the spring are
negligibly small. When the thread is cut and the spring is released, the two masses move freely
(box C). All the boxes are at rest in the reference frame O ′. The frame O ′ moves with velocity u
relative to the frame O.

F ‖ u, treating F and u as scalars is a legitimate simplification and the velocity change is
given by

du = u + a′ dt ′

1 + ua′ dt ′
c2

− u ≈ a′ dt ′
(

1 − u2

c2

)
. (3)

Using the time dilation formula dt = γ dt ′ we calculate that the change of the velocity u equals
du = a′(1 − u2/c2)3/2 dt . Integration of this differential equation is straightforward and the
result reads a′t = u(1 − u2/c2)−1/2. Therefore f (u) = u(1 − u2/c2)−1/2 and equation (2)
follows. Working backwards, we can also see that from equation (2) and u ‖ F follows
F′ = F. Similar to [24], the presented derivation does not use the momentum conservation
law explicitly.

The kinetic energy can be obtained in a standard way using the definition of the energy
as the work done by an external force when the particle moves from position 1 to position 2:

εkin =
∫ x2

x1

F dx =
∫ x2

x1

dP

dt
dx =

∫ p2

0
u dP . (4)

After integration [5–8], equation (1) follows.

3. Mass–energy relation

Now we consider a box filled with non-interacting particles (ideal gas) having equal masses m
(figure 1, box A). In a reference frame O ′ where the box is at rest the velocities of the particles
are given by vectors υ′

i ≡ (υ ′
i,x, υ

′
i,y, υ

′
i,z) (i = 1, . . . , N). We also select a reference frame O

relative to which the box moves along the x-axis with velocity u. The velocities of all particles
in the box are now υi (i = 1, . . . , N) and we can write their total momentum as

P =
N∑

i=1

mυi√
1 − υ2

i

/
c2

. (5)

Using the relativistic transformation for all the velocities we obtain for the x-component of the
total momentum

Px =
N∑

i=1

m
υ ′

i,x+u

1+υ ′
i,xu/c2√

1 − (υ ′
i,x+u)2+(υ ′2

i,y+υ ′2
i,z)(1−u2/c2)

c2(1+υ ′
i,xu/c2)2

. (6)
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After simple algebra this can be rewritten as

Px =
N∑

i=1

m(υ ′
i,x + u)√

(1 − u2/c2)
(
1 − υ ′2

i

/
c2

) , (7)

where υ ′2
i ≡ υ ′2

i,x + υ ′2
i,y + υ ′2

i,z. Because the particles move chaotically, summation in (7)
includes terms with opposite but equal in magnitude velocities υ ′

i,x , therefore

Px =
N∑

i=1

mu√
(1 − u2/c2)

(
1 − υ ′2

i

/
c2

) . (8)

Similar consideration results in Py = Pz = 0, which also follows from the symmetry of the
problem. On the other hand, considering the box with the particles inside as a single object, we
expect that the general equation (2) with yet unknown mass M holds. Comparing equation (2)
with m replaced by Mand equation (8), we obtain the equality

M =
N∑

i=1

m√
1 − υ ′2

i

/
c2

=
N∑

i=1

(
m +

εkin,i

c2

)
(9)

where εkin,i is the kinetic energy of the ith particle. The second equality in (9) follows from
equation (1). Thus, we arrive at the conclusion that the rest mass of the box with moving
particles is equal to the mass of the particles at rest plus the total kinetic energy of the particles
(that is the internal energy of an ideal gas) divided by c2. Note that although the middle part
of equation (9) can be viewed as a sum of ‘relativistic masses’ of the gas particles, the concept
of a relativistic mass can be misleading [25] and is not used in our derivation.

To treat potential energy, we consider two particles and a compressed spring which is
placed between them (figure 1, box B). The mass of the spring is assumed to be zero. When
the spring is released, the two particles start to move in the frame O ′ in opposite directions
with equal speeds. This mechanistic model represents decay of an unstable system (nuclear,
for example). When the spring is completely released, the two particles do not interact
anymore and can be treated like the ideal gas in the previous consideration. Therefore the total
momentum of two such unbound particles (figure 1, box C) in the reference frame O is given
by equation (8) with N = 2. Because at any time, the two particles (bound or unbound) do not
interact with external world (they together represent a closed system), the total momentum
of the bounded particles should also be given by equation (8) (momentum conservation
principle) where υ ′

1 and υ ′
2 are the velocities of the particles if the spring were completely

released. Hence, even for the bounded system equation (9) holds if one understands that
εkin,1 and εkin,2 are the kinetic energies of the particles after all potential energy of the spring
is transformed into the particle energies. Therefore, the total kinetic energy in equation (9)
can be replaced by the stored potential energy of the bound system (energy conservation
principle) assuming that the potential energy is zero when the particles are separated by a large
distance. This concludes the derivation of the mass–energy equivalence.

4. Conclusion

Looking back, one clearly sees that relativistic mechanics follow from Newtonian mechanics,
Lorentz transformations and the assumption about the existence of a frame invariant force. The
calculations are not really challenging and because the inertial mass is just a proportionality
factor in the expression for the momentum the mass energy relation does not look too
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mysterious (for an interesting discussion of the mass–energy equivalence, see [26]). The
relation between the inertial mass and gravity is not a subject of the special theory of relativity
and is simply postulated in general relativity.
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